

C-GLYCOSYLFLOWONES OF *MUCUNA SEMPERVIRENS*

NARIYUKI ISHIKURA and KUNIJIRO YOSHITAMA

Department of Biology, Faculty of Science, Kumamoto University, Kurokami, Kumamoto 860, Japan

(Received 8 September 1987)

Key Word Index—*Mucuna sempervirens*, Leguminosae, 8-C- α -L-arabinosylluteolin, 6,8-di-C- α -L-arabinosylapigenin, isoorientin

Abstract—8-C- α -L-Arabinosylluteolin, 6,8-di-C- α -L-arabinosylapigenin and isoorientin were isolated from leaves of *Mucuna sempervirens* and identified by UV-, 1 H and 13 C NMR and FDMS.

INTRODUCTION

The flowers pigments of *Mucuna sempervirens* Hemsl have been characterized as the 3-monoglucosides of delphinidin, petunidin and cyanidin [1]. In the present study, the leaf tissue of this plant was found to contain the C-glycosylflavones, 8-C- α -L-arabinosylluteolin (1), 6,8-di-C- α -L-arabinosylapigenin (2) and isoorientin (3). 8-C- α -L-arabinosylluteolin has not previously been reported. The structural elucidation of these C-glycosylflavones is now described.

RESULTS AND DISCUSSION

The UV spectra of three compounds (1-3) isolated from *Mucuna* leaves showed absorption typical for flavone glycosides, and were non-hydrolysable with hydrochloric acid and non-extractable with diethyl ether, so that they are probably C-glycosidic structures. Compounds 1 and 2 have UV absorption spectra consistent with their being luteolin and apigenin derivatives, respectively, in which all the hydroxyl functions are unsubstituted. Chemical shifts of sugar carbons for the 8-C-arabinoside in the 13 C NMR spectra of 1 were 74.6 d, 74.6 d, 70.8 t, 69.0 d, and 68.4 d [cf 2], and also the FDMS gave a *M*_r of 418 corresponding to 8-C- α -L-arabinosylluteolin, a compound which has not previously been reported. The *R*_f values of 2 were similar to those reported for 6,8-di-C- α -L-arabinosylapigenin [3] and 1 H and 13 C NMR and FDMS of 2 confirmed this structure.

Compound 3 was readily identified from its 1 H and 13 C NMR spectra and chromatographic behaviour as 6-C- β -D-glucosylluteolin (isoorientin) by direct comparison with an authentic sample. FDMS studies confirmed the identification and on acid treatment, 3 produced orientin as an isomer due to a Wessely-Moser rearrangement [cf 2].

EXPERIMENTAL

Plant material and extraction. Fresh leaves (1 kg) of *Mucuna sempervirens* Hemsl were collected in June and extracted with

Me₂CO (12 l). The extract was evapd *in vacuo* to remove Me₂CO and the aqueous fraction obtained successively washed with petrol and Et₂O. The Et₂O extract contained no flavonoid.

Separation and identification The aqueous fraction was concd to small vol giving 3 in a semicrystalline state, which was recryst from 70% EtOH (yield 120 mg). The remainder of the aqueous fraction was applied to a Sephadex LH-20 column, equilibrated with 70% EtOH, and eluted with the same soln to give 1 and 2, which were purified by TLC cellulose (avicel) in *n*-BuOH-HOAc-H₂O (4:1:5) (BAW) and 15% HOAc. Compound 1 separated was crystallized from H₂O and 2, from EtOH (yields 94 and 177 mg, respectively).

8-C- α -L-Arabinosylluteolin (1) Yellow needles mp 213-214°; UV light black, +NH₃ yellow, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 257, 269, 293sh, 350, +AlCl₃ 276, 303sh, 330sh, 422, +AlCl₃/HCl 265sh, 277, 298, 360, 388, +NaOAc 274, 325, 396, +NaOAc-H₃BO₃ 266, 377, 430sh. PC *R*_f 0.35 (BAW), 0.15 (15% HOAc), 0.46 (*n*-BuOH-EtOH-H₂O, 4:1:2) (BEW), 0.05 (H₂O), 0.02 (3% HOAc). Diazotized *p*-nitroaniline brown. FDMS Found *m/z* 419. Calcd for C₂₀H₁₈O₁₀ M, 418. 1 H NMR δ (DMSO-d₆) 2.5-5.5 (11H, *m*, aliphatic and OH), 6.265 (1H, *s*, H-6), 6.674 (1H, *s*, H-3), 6.890 (1H, *d*, *J*=8.3 Hz, H-5'), 7.35-7.50 (2H, *m*, H-2' and H-6'), 9.101 (1H, *s*, OH), 9.919 (1H, *s*, OH), 10.5 (1H, *br s*, OH), and 13.270 (1H, *s*, OH-5). 13 C NMR δ (DMSO-d₆) 68.367 (*d*, -OCH₂), 69.013 (*d*, -OCH₂), 70.774 (*t*, C-5(a)), 74.590 (*d*, 2 \times -OCH₂), 98.455 (C-6), 102.067 (*d*, C-3), 103.767 (*s*, C-10), 104.298 (*s*, C-8), 113.513 (*d*, C-2'), 116.040 (*d*, C-5'), 119.755 (*d*, C-6'), 121.324 (small *d*, C-1'), 145.334 (*s*, C-3'), 149.594 (*s*, C-4'), 156.104 (*s*, C-5), 160.397 (*s*, C-9), 162.539 (*s*, C-7), 164.004 (*s*, C-2) and 181.908 (*s*, C-4). (a)= α -L-Arabinose.

6,8-di-C- α -L-Arabinosylapigenin (2) Yellow needles mp 217-218°; UV light black, +NH₃ yellow; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm 273, 333, +NaOMe 284, 334, 402, +AlCl₃ 280, 306, 352, 385 sh, +AlCl₃/HCl 280, 305, 349, 380 sh, +NaOAc 283, 310 sh, 336, 398, +NaOAc-H₃BO₃ 285, 320, 350 sh, 411. PC *R*_f 0.34 (BAW), 0.43 (15% HOAc), 0.50 (BEW), 0.28 (H₂O), 0.18 (3% HOAc). Diazotized *p*-nitroaniline brown. FABMS Found 534. Calcd for C₂₅H₂₆O₁₃ M, 534. 1 H NMR (DMSO-d₆) 3-5 (10H, *m*, aliphatic plus nOH), 6.858 (1H, *s*, H-3), 6.902 (2H, *d*, H-3' and H-5'), *ca* 9 (2H, *d*, H-2' and H-6'), 9.196 (1H, *s*, OH), 10.334 (1H, *s*, OH), and 13.792 (1H, *s*, OH-5). 13 C NMR δ (DMSO-d₆) 68.5, 68.9, 70.1, 70.9, 74.0, 74.5 (aliphatic carbons), 102.1 (*d*, C-3), 103.4 (*s*, C-10), 104.6 (*s*, C-8), 108.1 (*s*, C-6), 115.922 (*d*, C-3' and C-5'), 120.972 (*s*, C-1'), 129.3 (*d*, C-2' and C-6'), 154.8 (*s*, C-5), 158.5 (*s*,

C-7), 161.036 (s, C-4' and C-9), 164.032 (s, C-2), and 182.200 (s, C-4)

Isoorientin (3) was identified by PC, UV, ^1H NMR, ^{13}C NMR and FDMS spectral studies and also by co-TLC, mp and mmp with an authentic sample

REFERENCES

- Ishikura, N and Shibata, M (1973) *Bot Mag Tokyo* **86**, 1
- Markham, K M (1982) *Techniques of Flavonoid Identification* Academic Press, London
- Wallace, I. W., Yoppe, D. L., Besson, and Chopin, I (1981). *Phytochemistry* **20**, 2701

Phytochemistry, Vol 27, No 5, pp 1556-1559, 1988
Printed in Great Britain

0031 9422/88 \$3.00 + 0.00
Pergamon Press plc

FLAVONOIDS AND A COUMARIN FROM *GUTIERREZIA SPHAEROCEPHALA*

RHONGZHI LI,* NIANBAI FANG† and TOM J MABRY

The Department of Botany, The University of Texas at Austin, Austin, TX 78713-7640, U.S.A.

(Revised received 9 September 1987)

Key Word Index: *Gutierrezia sphaerocephala*; Compositae; Astereae; flavones; flavonols; flavanones, 5,3',4',5'-tetrahydroxy-6,7-dimethoxyflavone, 5,7,4'-trihydroxy-6,3'-dimethoxyflavanone

Abstract—The ethyl acetate extract of the aerial parts of *Gutierrezia sphaerocephala* afforded, in addition to one coumarin, 10 known and two new flavonoids. The structures were elucidated by spectroscopic methods. The new flavonoids are 5,3',4',5'-tetrahydroxy-6,7-dimethoxyflavone and 5,7,4'-trihydroxy-6,3'-dimethoxyflavanone

As a part of our chemosystematic survey of the '*Gutierrezia-Xanthocephalum* complex' [1-9], we have investigated the *Gutierrezia sphaerocephala* Gray. Chromatographic separation of the ethyl acetate and dichloromethane extracts of a concentrated aqueous methanol extract of aerial parts of *G. sphaerocephala* afforded one coumarin, 7,8-dihydroxy-6-methoxycoumarin (13) [10] and 12 flavonoids. The 10 known flavonoids are 5,7-dihydroxy-6,4'-dimethoxyflavone (1) [11], 5,7,3',4'-tetrahydroxy-6-methoxyflavone (2) [11], 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (3) [11], 5,7-dihydroxy-6,3',4'-trimethoxyflavone (4) [11], 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone (5) [12], 3,5,7,3',4'-pentahydroxyflavone (6) [11], 3,5,7,3',4'-pentahydroxy-6-methoxyflavone (7) [11], 3,5,7,4'-tetrahydroxy-6,3'-dimethoxyflavone (8) [11], 3,5,7,3',4'-pentahydroxyflavone 3-galactoside (9) and 5,7,3',4'-tetrahydroxy-6-methoxyflavanone (10) [13]. The new flavonoids are 5,3',4',5'-tetrahydroxy-6,7-dimethoxyflavone (11) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavanone (12).

The ^1H NMR spectrum (90 MHz) of the TMSI ether derivative of 11 (Table 1) exhibited two one-proton singlets at δ 6.27 and 6.51 characteristic of H-3 and H-8, respectively, and a two-proton singlet at δ 6.96 typical of protons at 2' and 6' in a symmetrically substituted B-ring. Since the remaining signals in the ^1H NMR spectrum were in accord with two methoxyl groups, 11 has a 5,6,7,3',4',5'-oxygenation pattern. The MS of 11 exhibited a molecular ion peak at m/z 346 (100%) in accord with an aglycone containing four hydroxyl and two methoxyl groups. Compound 11 appeared as purple spot on paper under UV light and changed to yellow with ammonia, suggesting the presence of free 5 and 4'-hydroxyl groups. Compound 11 also gave an orange colour with NA, which, together with the symmetrical substituted B-ring already established, indicated a B-ring with 3',4',5'-trihydroxyl groups. With the establishment of 5,3',4',5'-tetrahydroxyl groups and to accommodate the 5,6,7,3',4',5'-oxygenation pattern, the two methoxyl groups must be at the 6 and 7 positions. These conclusions are supported by the UV spectra (Table 2). Thus, 11 is 5,3',4',5'-tetrahydroxy-6,7-dimethoxyflavone.

The ^1H NMR signals at δ 2.65 (1H, d) 2.77 (1H, d) and 5.20 (1H, dd) characteristic for H-3 *cis*, H-3 *trans* and H-2 and a molecular ion at m/z 332 (99%) in the MS spectrum indicated that 12 is a flavanone with three hydroxyl and two methoxyl groups. The ^1H NMR spectrum of the

*Beijing Medical University, Beijing, China

†The Hubei College of Chinese Traditional Medicine, Wuhan, China